The Crystal and Molecular Structure of α-Isosparteine Diperchlorate, $\mathbf{C}_{\mathbf{1 5}} \mathbf{H}_{\mathbf{2} 6} \mathbf{N}_{\mathbf{2}} . \mathbf{2 H C l O} \mathbf{H}^{*}$

By Maria Przybylska
Division of Biological Sciences, National Research Council of Canada, Ottawa, Canada K1A 0R6

(Received 20 June 1974; accepted 22 June 1974)

Abstract

α-Isosparteine diperchlorate, $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~N}_{2} .2 \mathrm{HClO}_{4}$, is orthorhombic, space group $C 222_{1}$, with $a=9.902$ (3), $b=13 \cdot 510$ (4) and $c=14.480$ (4) $\AA ; Z=4$. The molecule consists of four fused six-membered rings in the chair form; a twofold axis passes through the methylene bridge atom. The structure was solved by the heavy-atom method and refined by block-diagonal least-squares calculations to $R=0.055$ for 879 observed reflexions. The α-isosparteine molecule straddles one of the ClO_{4}^{-}ions, to which it is hydrogen bonded.

Introduction

The structure of α-isosparteine monohydrate, a lupin alkaloid, was solved by Przybylska \& Barnes (1953). It was shown to consist of four chair rings with a twofold axis passing through the bridging atom. The diperchlorate of α-isosparteine was therefore expected to have the structure (I); however, because of the presence of considerable strain due to the repulsion between the $\mathrm{N}^{+}-\mathrm{H}$ atoms, the structure (II) was considered as an alternative.

$2 \mathrm{ClO}_{4}^{-}$
(I)

$2 \mathrm{ClO}_{4}^{-}$
(II)

In (II), an inversion at one of the nitrogen atoms converts one of the inner rings to a boat form. Such inversion has indeed been shown to take place readily in solution in some derivatives of sparteine (Wiewiórowski, Edwards \& Bratek-Wiewiórowska, 1967; Pellón, Mosquera, Castedo \& Ribas, 1969).
The preliminary examination of the α-isosparteine diperchlorate crystals and the determination of the space group revealed twofold symmetry of the molecule. The structure (II) was therefore eliminated. However, because of the strain in the molecule it was important to obtain the structural details.

Experimental

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~N}_{2} .2 \mathrm{HClO}_{4}$, F.W. $435 \cdot 30$, m.p. $252-257^{\circ} \mathrm{C}$ (dec. uncorr.), orthorhombic sphenoids, space group: $C 222_{1}$;

[^0]$a=9.902$ (3), $b=13 \cdot 510$ (4), $c=14 \cdot 480$ (4) \AA,
$V=1936 \cdot 7 \AA^{3}, Z=4, F(000)=920$.
$D_{x}=1.493 \mathrm{~g} \mathrm{~cm}^{-3}$,
$D_{m}=1.485 \mathrm{~g} \mathrm{~cm}^{-3}$ by flotation in carbon tetrachloride and toluene.
$\mu($ Mo $K \alpha)=3.9 \mathrm{~cm}^{-1}$.
The crystals of α-isosparteine diperchlorate were prepared by Dr M. Wiewiórowski by adding concentrated aqueous perchloric acid to a methanolic solution of α isosparteine monohydrate until the solution was acid to Congo red (Cockburn \& Marion, 1951). Colourless crystals were obtained on slow cooling of a saturated solution in methanol.

Preliminary study of the crystals was carried out with precession films and the cell dimensions were measured on a diffractometer with Cu and Mo radiation. Since there are eight equivalent positions in the space group $C 222_{1}$, each molecule must possess a twofold axis.

The crystal was cut into a sphere of 0.46 mm diameter and mounted with c along the φ axis. The data were collected at room temperature on a Picker fourcircle automatic diffractometer with Mo radiation and a Nb filter. The $\theta / 2 \theta$ scanning method was used at a take-off angle of 5°. The scan was 2° in 2θ and the speed was $2^{\circ} \mathrm{min}^{-1}$. Background measurements for 20 s were taken at each end of the scans. High intensities were remeasured with an extra thickness of Nb foil and, if necessary, attenuated with lower current settings. A standard reflexion was measured after every $30-50$ reflexions.

The threshold was taken as a net count of 100 or 5% of the background, whichever was higher. 1266 reflexions were measured within $2 \theta \sim 55^{\circ}\left(\sin ^{2} \theta_{\text {max }}=0.212\right)$ but only $879(69 \%)$ were observed above threshold.

The intensities were corrected for Lorentz and polarization factors but absorption corrections were considered unnecessary because the linear absorption coefficient was small and the crystal ${ }_{\perp}$ was spherical.

Solution of the structure and its refinement

The scale and overall isotropic temperature factors were evaluated by Wilson's method (1942).

A sharpened Patterson synthesis revealed the position of the chlorine atoms, and the locations of the nonhydrogen atoms with the exception of the four oxygen atoms of one ClO_{4} group were derived from the subsequent electron density maps.

The least-squares refinement began when R was 0.32 and continued until it decreased to $0 \cdot 20$. At this stage a difference map was computed in order to locate $\mathrm{O}(3)$, $\mathrm{O}(4), \mathrm{O}(5)$ and $\mathrm{O}(6)$ of the ClO_{4}^{-}ion straddled by the isosparteine molecule. The distribution of peaks of $\frac{1}{2}$ oxygen height indicated the presence of positional disorder of that ClO_{4} group. A thorough examination of the systematic absences of the space group $C 222_{1}$ was then carried out with Cu radiation and a General Electric XRD-5 manual diffractometer, but the results were inconclusive. Two orientations of ClO_{4} were therefore assumed to be present and the positions of the oxygen atoms were assigned by fitting a tetrahedral model as well as possible to the electron density map. In three more cycles R of $0 \cdot 13$ was obtained and the anisotropic refinement of the non-hydrogen atoms was undertaken. Four additional cycles brought R to 0.09 . At this stage another difference map yielded the positions of all the hydrogen atoms. The final value of R was 0.055 and the maximum atomic shift was 0.4 of the e.s.d.'s.

The refinement was carried out by block-diagonal least-squares calculations, utilizing only the observed reflexions, and minimizing the quantity $\sum_{\mathrm{w}}\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ where $w=1 /\left\{\left|F_{o}\right|+10 \cdot 24+0 \cdot 01\left|F_{o}\right|^{2}\right\}$ and $4 \cdot 5 \leq\left|F_{o}\right| \leq$ 213.2.

The final parameters with their e.s.d.'s of the nonhydrogen atoms are presented in Table 1. The coordinates and the isotropic temperature factors of the hydrogen atoms are given in Table 2. The observed and calculated structure factors for all measured reflexions are listed in Table 3. Only two observed reflexions $(020,350)$ had their $|\Delta F| /\left|F_{o}\right|>3 R$. Their high observed values were probably due to multiple diffraction. All the unobserved reflexions have $\left|F_{c}\right| \leq 1 \cdot 5\left|F_{\text {threshoid }}\right|$.

Table 2. Fractional coordinates ($\times 10^{3}$) with e.s.d.'s and temperature factors for the hydrogen atoms
The number of the parent atom is obtained by omitting the last digit.

	x / a	y / b	z / c	$B\left(\AA^{2}\right)$
$\mathrm{H}(11)$	$391(5)$	$369(3)$	$235(3)$	$1 \cdot 9$
$\mathrm{H}(21)$	$160(6)$	$405(4)$	$267(4)$	$3 \cdot 9$
$\mathrm{H}(22)$	$144(4)$	$312(3)$	$217(3)$	$1 \cdot 0$
$\mathrm{H}(31)$	$248(12)$	$490(9)$	$138(8)$	$12 \cdot 4$
$\mathrm{H}(32)$	$110(7)$	$440(5)$	$125(5)$	$5 \cdot 5$
$\mathrm{H}(41)$	$240(5)$	$392(4)$	$0(3)$	$2 \cdot 7$
$\mathrm{H}(42)$	$169(6)$	$292(5)$	$045(5)$	$5 \cdot 6$
$\mathrm{H}(51)$	$434(7)$	$386(6)$	$059(5)$	$6 \cdot 7$
$\mathrm{H}(52)$	$405(5)$	$279(3)$	$9(4)$	$2 \cdot 4$
$\mathbf{H}(61)$	$329(6)$	$203(4)$	$150(4)$	$4 \cdot 1$
$\mathrm{H}(71)$	$539(6)$	$155(4)$	$112(4)$	$3 \cdot 5$
$\mathbf{H}(81)$	$398(6)$	$092(4)$	$232(4)$	$3 \cdot 8$
$\mathrm{H}(101)$	$351(6)$	$323(5)$	$370(4)$	$4 \cdot 6$
$\mathbf{H}(102)$	$321(5)$	$240(4)$	$332(4)$	$3 \cdot 2$

All calculations were carried out with the aid of the NRC crystallographic computer programs (Ahmed, Hall, Pippy \& Huber, 1966). The scattering factors were those of Cromer \& Waber (1965) for Cl^{-}, Hanson, Herman, Lea \& Skillman (1964) for C, O \& N, and Stewart, Davidson \& Simpson (1965) for H.
An effort was made to determine the absolute configuration from all data, but owing to small anomalous dispersion corrections for Mo radiation (Cromer, 1965) and the fact that Cl atoms are situated on twofold axes, the application of Hamilton's (1965) test did not lead to any conclusive results.

Discussion

Molecular structure

A parallel projection of the α-isospartcine molecule is presented in Fig. 1. It was obtained with Johnson's (1965) ORTEP program and shows thermal ellipsoids enclosing the 50% probability level. The bond lengths and angles of the cation are shown in Fig. 2.

Table 1. Final fractional coordinates and vibration tensor components for the expression $T=\exp \left\{-2 \pi^{2}\left(U_{11} a^{* 2} h^{2}+\ldots+2 U_{12} a^{*} b^{*} h k\right)\right\}$ and their e.s.d.'s (all quantities $\left.\times 10^{4}\right)$

x / a	y / b	z / c	
$1987(2)$	5000	5000	5
5000	$5860(1)$	2500	5
$2800(11)$	$4185(7)$	$4967(6)$	2
$1346(12)$	$4939(9)$	$5826(8)$	2
$4751(12)$	$4875(6)$	$2849(7)$	7
$6407(12)$	$5867(11)$	$2236(10)$	53
$4182(15)$	$6174(10)$	$1827(12)$	127
$5107(23)$	$6510(7)$	$3286(9)$	230
$3432(4)$	$3181(3)$	$2324(3)$	2
$1975(6)$	$3572(5)$	$2206(5)$	2
$1872(7)$	$4165(5)$	$1357(6)$	
$2333(8)$	$3595(6)$	$517(5)$	8
$3789(8)$	$3209(5)$	$642(4)$	
$3833(6)$	$2566(4)$	$1496(3)$	
$5163(6)$	$2029(3)$	$1669(3)$	
5000	$1351(5)$	2500	
$3579(6)$	$2649(4)$	$3231(4)$	

Table 3. Observed and calculated structure factors ($\times 10$)
Reflexions too weak to be measured are marked with an asterisk.

The C-C bonds vary from 1.471 to $1.544 \AA$ with a mean of $1.513 \AA$, which is in agreement with Sutton's (1965) value of $1.537 \AA$. The deviations from the average value are not chemically significant, but reflect the overall accuracy of this determination. The $\mathrm{C}-\mathrm{N}$ bond lengths agree with values found in molecules in which
a quaternary nitrogen atom is attached to three $C\left(s p^{3}\right)$ atoms (Birnbaum, 1967).

The angles given in Fig. 2, omitting the value of 117.7° for $\mathrm{C}\left(10^{\prime}\right)-\mathrm{C}(7)-\mathrm{C}(6)$, give an acceptable mean of 110.9°. The large value of the excluded angle was expected on the basis of structural analyses of other
lupine alkaloids (Przybylska \& Barnes, 1953; Srivastava \& Przybylska, 1969). A tetrahedral angle for C(10^{\prime})-$\mathrm{C}(7)-\mathrm{C}(6)$ would bring the nitrogen atoms within the molecule too close to each other $(2 \cdot 5 \AA)$. That distance in this structure is $3.147 \AA$ and that between the hydrogen atoms of the NH groups is $2 \cdot 21 \AA$. This $\mathrm{H} \cdots \mathrm{H}$ separation does not deviate significantly from the normal van der Waals contact.
The bond lengths and angles of the ClO_{4} groups are listed in Table 4. The bonds range from 1.337 to 1.445 , with a mean of $1.398 \AA$, and the $\mathrm{O}-\mathrm{Cl}-\mathrm{O}$ angles vary from 97.7° to $124 \cdot 3^{\circ}$ with a mean of $109 \cdot 2^{\circ}$. Not too much significance should be attached to these values because of lack of correction for thermal motion and because of the disorder of one of the ClO_{4} groups.

Table 4. The bond lengths and angles of the perchlorate anions
The e.s.d.'s for the angles are ca. 0.8°.

$\mathrm{Cl}(1)-\mathrm{O}(1)$	$1 \cdot 365(11) \AA$	$\mathrm{O}(1)-\mathrm{Cl}(1)-\mathrm{O}(2)$	$104 \cdot 9^{\circ}$
$\mathrm{Cl}(1)-\mathrm{O}(2)$	$1 \cdot 357(12)$	$\mathrm{O}(1)-\mathrm{Cl}(1)-\mathrm{O}\left(1^{\prime}\right)$	$107 \cdot 7$
$\mathrm{Cl}(2)-\mathrm{O}(3)$	$1 \cdot 444(8)$	$\mathrm{O}(2)-\mathrm{Cl}(2)-\mathrm{O}\left(1^{\prime}\right)$	$107 \cdot 1$
$\mathrm{Cl}(2)-\mathrm{O}(4)$	$1 \cdot 445(12)$	$\mathrm{O}(2)-\mathrm{Cl}(1)-\mathrm{O}\left({ }^{\prime}\right)$	$124 \cdot 3$
$\mathrm{Cl}(2)-\mathrm{O}(5)$	$1 \cdot 337(16)$	$\mathrm{O}(3)-\mathrm{Cl}(2)-\mathrm{O}(4)$	$105 \cdot 3$
$\mathrm{Cl}(2)-\mathrm{O}(6)$	$1 \cdot 442(12)$	$\mathrm{O}(3)-\mathrm{Cl}(2)-\mathrm{O}(5)$	$116 \cdot 4$
		$\mathrm{O}(3)-\mathrm{Cl}(2)-\mathrm{O}(6)$	$107 \cdot 3$
		$\mathrm{O}(4)-\mathrm{Cl}(2)-\mathrm{O}(5)$	$112 \cdot 9$
		$\mathrm{O}(4)-\mathrm{Cl}(2)-\mathrm{O}(6)$	$97 \cdot 7$
		$\mathrm{O}(5)-\mathrm{Cl}(2)-\mathrm{O}(6)$	$115 \cdot 2$

The C-H bond lengths are in the range $0 \cdot 51-1 \cdot 12 \AA$, and their mean is $0.96 \AA$. The $\mathrm{H}-\mathrm{C}-\mathrm{H}$ and $\mathrm{C}-\mathrm{C}-\mathrm{H}$ angles vary from 97.4 to $122 \cdot 3^{\circ}$ with a mean of $108 \cdot 3^{\circ}$.

The results of the conformational analysis are presented in Table 5. The signs of the torsional angles are according to the convention of the IUPAC-IUB Commission on Biological Nomenclature (1970), and the e.s.d.'s were calculated according to Huber (1961). The two rings are of chair form, but owing to strain in the molecule the inner ring shows much greater deviations from the ideal conformation. Ring A is flattened at the nitrogen atom. The torsional angles of the $\mathrm{C}-\mathrm{N}$ bonds are only 41.4 and $45 \cdot 4^{\circ}$ and the distance of N from the plane for $C(7), C(9), C(6)$ and $C(10)$ is $0.52 \AA$. The four atoms of ring A used for the calculation of the plane were found not coplanar, but those of the outer ring B were. The e.s.d.'s of Δ are 0.004 to $0.008 \AA$.

Crystal structure

The molecule of α-isosparteine is hydrogen bonded to $\mathrm{O}(3)$ of the perchlorate group, as shown in Fig. 3. The symmetry-related hydrogen bonds $\mathrm{N}(1)-\mathrm{H}(11) \cdots$ $\mathrm{O}\left(3^{\prime}\right)$ and $\mathrm{N}\left(1^{\prime}\right)-\mathrm{H}\left(11^{\prime}\right) \cdots \mathrm{O}\left(3^{\prime}\right)$ are identical with those presented in Table 6. The hydrogen-bonding has probably contributed to the stability of the all chair conformation of the α-isosparteine molecule in spite of strong repulsion between the $\mathrm{N}^{+}-\mathrm{H}$ groups. It had also reduced the vibration of $\mathrm{O}(3)$ leading to the lengthening of the $\mathrm{Cl}(2)-\mathrm{O}(3)$ bond $(1 \cdot 44 \AA)$.

Fig. 1. A projection of the molecule down b showing thermal ellipsoids.

Fig. 2. Bond lengths and angles. The e.s.d.'s of angles vary from 0.4 to 0.6°.

Fig. 3. Packing of the molecules projected along \mathbf{c}.

Table 5. Torsional angles with their e.s.d.'s and weighted least-squares planes
Inner ring A

$\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$-60 \cdot 0(4)^{\circ}$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$68 \cdot 2(5)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$-62 \cdot 4(4)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{N}(1)$	$50 \cdot 3(4)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{N}(1)-\mathrm{C}(6)$	$-41 \cdot 4(5)$
$\mathrm{C}(10)-\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$45 \cdot 4(4)$

Outer ring B

Equations of the planes

$$
\begin{aligned}
& A:-0.5140 X-0.8568 Y-0.0411 Z=5.0425 \AA \\
& B:-0.3357 X-0.9399 Y-0.0624 Z=5.3903
\end{aligned}
$$

* Atoms excluded from the calculation of the plane.

Table 6. Distances and angles of the hydrogen bonds

	Angle	$D \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$
$\mathrm{~N}(1)-\mathrm{H}(11) \cdots \mathrm{O}(3)$	159°	$2.742 \AA$	$0.84 \AA$	$1.94 \AA$
$\mathrm{~N}\left(1^{\prime}\right)-\mathrm{H}\left(11^{\prime}\right) \cdots \mathrm{O}(3)$	169	2.922	0.84	2.09
$\mathrm{C}(2)-\mathrm{H}(21) \cdots \mathrm{O}\left(2^{\prime}\right)$	160	3.542	1.00	2.58

$O(3)$ was placed at the beginning of refinement $0 \cdot 40 \AA$ from the twofold axis. The distance increased to a final value of $0.56 \AA$. The coordinates of $\mathrm{O}(3)$ in conjunction with those of $O(4), O(5)$ and $O(6)$ gave an arrangement of bonds considerably closer to tetrahedral geometry than those of $\mathrm{O}\left(3^{\prime}\right)$.
It was not possible on the basis of the X-ray experiment, mentioned earlier, to decide unequivocally whether two orientations of that ClO_{4} group are really present or whether one set of oxygen atoms was an artifact due to the symmetry of space group $C 222_{1}$. Considering however the symmetrical environment of the ClO_{4}^{-}ion there does not seem to be any reason for the existence of only one of these orientations and the
assumption that both are present is likely to be correct.
An additional very weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond may exist between $\mathrm{C}(2)$ and $\mathrm{O}\left(2^{\prime}\right)$ attached to $\mathrm{Cl}(1)$. The details are also given in Table 6. The structure may therefore consist of spirals of hydrogen-bonded α-isosparteine and $\mathrm{Cl}(1)-\mathrm{O}_{4}$ molecules, parallel to \mathbf{c}.

There is another short $\mathrm{H}(81) \cdots \mathrm{O}(2)$ contact of $2.48 \AA$ but the angle $\mathrm{C}(8)-\mathrm{H}(81) \cdots \mathrm{O}(2)$ is too small $\left(122^{\circ}\right)$ for it to be considered a hydrogen bond. There are no other intermolecular distances shorter than the sums of the appropriate van der Waals radii.

Grateful acknowledgement is made to Dr M. Wiewiórowski for suggesting this investigation and for providing the crystals. I also thank Mrs H. M. Sheppard for her valuable assistance.

References

Ahmed, F. R., Hall, S. R., Pippy, M. E. \& Huber, C. P. (1966). NRC Crystallographic Programs for the IBM/360 System. World List of Crystallographic Computer Programs. 2nd ed. Appendix, p. 52. Utrecht: Oosthoek.
Birnbaum, G. I. (1967). Acta Cryst. 23, 526-535.
Cockburn, W. F. \& Marion, L. (1951). Canad. J. Chem. 29, 13-21.
Cromer, D. T. (1965). Acta Cryst. 18, 17-23.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104-109.
Hamilton, W. C. (1965). Acta Cryst. 18, 502-510.
Hanson, H. P., Herman, F., Lea, J. D. \& Skillman, S. (1964). Acta Cryst. 17, 1040-1044.

Huber, P. J. (1961). Helv. Chim. Acta, 44, 2032-2033.
iUPAC-IUB Commission on Biological Nomenclature (1970). J. Mol. Biol. 52, 1-17.

Johnson, C. K. (1965). ORTEP. Report ORNL-3794 revised, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Pellón, A., Mosquera, R., Castedo, L. \& Ribas, I. (1969). Tetrahedron Lett. pp. 129-132.
Przybylska, M. \& Barnes, W. H. (1953). Acta Cryst. 6, 377-384.
Srivastava, S. N. \& Przybylska, M. (1969). Acta Cryst. B25, 1651-1659.
Stewart, R. F., Davidson,, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Sutton, L. E. (1965). Tables of Interatomic Distances and Configuration in Molecules and Ions, Supplement. London: The Chemical Society.
Wiewiórowski, M., Edwards, O. E. \& Bratek-Wiewiórowska, M. D. (1967). Canad. J. Chem. 45, 1447-1457.
Wilson, A. J. C. (1942). Nature, Lond. 150, 151-152.

[^0]: * Issued as N.R.C.C. No. 14255.

